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ABSTRACT

Although many poly(organophosphazenes) have been synthesized,
new preparative pathways are needed, especially for polymers
that contain alkyl side groups. A new development involves
the use of poly(difluorophosphazene), (NPF2 )n, instead of poly-
(dichlorophosphazene), (NPC12 )n, as a substrate for reactions with
organometallic reagents. This approach has allowed the
preparation of a new class of poly(organophosphazenes) that
possess substituent groups linked to the skeleton through direct
phosphorus-carbon bonds. The synthesis of uncrosslinked poly-
(difluorophosphazene) and its reactions with alkoxides and
amines are also reviewed.



INTRODUCTION

Poly(organophosphazenes) are an unusual and structurally

diverse group of inorganic-organic macromolecules that provide

valuable chemical and physical differences from conventional

organic polymer systems [1, 2, 3]. They are normally

prepared by substitution reactions carried out with the highly

reactive polymeric intermediate, poly(dichlorophosphazene),

(NPCl2)n. The well-known interactions of (NPCl2)n with sodium

alkoxides, sodium aryloxides, primary amines, or secondary

amines have been employed to prepare over 100 polymeric

derivatives (Scheme 1). Some of these are of interest as new

structural materials or as carrier molecules for chemotherapeutic

agents or transition metal species.
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A major objective in our laboratory over the past 5 years

has been to extend Scheme 1 to include the interactions of poly-

(dichlorophosphazene) with organometallic reagents with a view to

the preparation of poly(alkyl- or arylphosphazenes),

(NPR2)n.  However, the reactions of (NPC12)n with organolithium

or organomagnesium reagents involve concurrent chain scission

and substitution reactions. Thus, it has not yet been possible

to prepare polymers from (NPC12)n that possess significant

amounts of aryl or alkyl pendent groups without encountering a

concurrent molecular weight decline [4].

We have now been able to solve this problem by a new

approach which involves the use of poly(difluohosphazene),

(NPF2)n, in place of (NPC12)n [5] as a polymeric reaction

substrate. Initially, little was known about the reactions of

poly(difluorophosphazene) with simple nucleophiles such as amines

or alkoxides. Indeed, until recently, a soluble form of

(NPF2 ) had not been prepared. Here, we review three aspects

of the chemistry of poly(difluorophosphazene): (1) a synthesis

route to the preparation of an organic solvent-soluble

modification of (NPF 2)n; (2) the reactions of (NPF2)n with

sodium alkoxides, aryloxides, and amines; (3) the reactions of

(NPF2)n with organolithium and organomagnesium reagents.

Preparation and Properties of Poly(difluorophosphazene)

A synthesis route to crosslinked poly(difluorophosphazene),

(NPF2)n, has been known since 1958. However, the crosslinked

form is unsuitable for substitution reactions [6]. The first

organic-solvent-soluble version of (NPF2)n was prepared in our

laboratory in 1974 (Scheme 2).
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Scheme 2

This was accomplished by the use of a methodology developed

approximately 10 years earlier for the isolation of uncrosslinked

poly(dichlorophosphazene). In that earlier work it was found

that the crosslinking of poly(dichlorophosphazene) occurs only

after 70% or more of the (NPC12 )3 has been converted to high

polymer. If the polymerization is terminated before this

stage, organic solvent-soluble polymer can be isolated [7].

The polymerization of (NPF2 )3 to (NPF2 )n also passes through

these same stages, from unchanged molten trimer, through

mixtures of trimer with uncrosslinked (NPF2 )n, to crosslinked,

insoluble (NPF2 )n. Thus, the isolation of poly(difluoro-

phosohazene) in a form that is suitable for substitution

experiments requires that the polymerization be terminated

during the second'stage (70% conversion was the upper limit for

the isolation of soluble polymer) [8].

The mechanism of polymerization of trimeric halophosphazenes

to poly(halophosphazenes) has not yet been firmly established.

However, a 31P NR study of the conversion of (NPF2 )3 to (NPF2 )n

has suggested that no appreciable equilibration between (NPF2 )3

and (NPF2 )4 is involved in the polymerization process (Figure 1).



d

C

b

.40 0 -40

Pp"

FIG 1. 1P HR spectra obtained at difference stages

during the polymerization of (NPF2)3 to (NPF2)n. Spectra a, b,

c, d, and e are from samples in which the degrees of conversion

to the polymer were 1.52, 5.0%, 15.6%, 63%, and 94%,

respectively. The spectra illustrate the disappearance of

(NPF2)3 and the appearance of (NPF2) n without the accompanying

formation of other species. The spectra were obtained for

samples in perfluorobutyltetrahydrofuran solvent and were

referenced to an 85% aqueous H3P04 external reference.

Poly(difluorophosphazeno) is a white or colorless elastomeric

compound that is hydrolytically unstable and is soluble only in

perfluorinated solvents. The unusual solubility behavior of

(NPF2)n presented some complications when substitution reactions



were attempted, because the nucleophiles employed in these

present studies are soluble in etheric solvents, such as tetra-

hydrofuran, but are insoluble in perfluorinated solvents. Thus,

the substitution reactions described here were carried out in

heterophase reaction media.

The Reactions of Poly(difluorophosphazene)

1. Information available from model system studies. The

substitution reactions of polymers are often complex. Thus, it

is useful to carry out initial mechanistic studies with small

molecule model compounds and to utilize the information obtained

as a predictive technique for the high polymer reactions [9].

We have employed this method successfully to anticipate the

reactions of poly(difluorophosphazene) from studies of the

cyclic trimeric and tetrameric model compounds (NPF2)3 and

(NPF2)4. The results of these model studies are as follows.

The reactions of (KPF2)4 with sodium trifluoroethoxide or

sodium phenoxide resulted in the formation of [NP(OCH2CF3)214

or [NP(OC6H5 )2]4. However, the interactions of (NPF2)4 with

primary or secondary amines, such NH2CH3, NH 2C4H9, or

NH(CI 3)2, yielded exclusively non-geminally substituted

aminofluorophosphazenes. When the same reaction conditions

were employed with (NPCI2)3, complete amination was accomplished.

For example, the reaction of (NPF2)4 with an excess of n-butyl-

amine yielded [N4P4 (NHC4H9)4F4 ] (Scheme 3), but no compounds

that possessed higher degrees of amination could be isolated

(even at reaction temperatures as high as 60*C). This same

substitution pattern was observed for the cyclic trimeric

compound (NPF2)3, although these reactions were slower than for

(NPF2)4 . However, use of the more reactive reagent, LIN(CH3)2
for reactions with (NPF 2)4 did yield cyclic compounds such as

[N4P4(N(CH3)2)7F] and ([P(N(CH3)2 )2 ]4 [103 (Scheme 3).
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The reaction mechanism for the amination of fluorocyclo-

phosphazenes is still not completely understood. However, the

inability of compounds such as N4P4 (NHR)4F4 and N3P3(NHR)3F3

to undergo further amination is probably a consequence of three

factors: (1) Electron donation takes place from a pendent amino

substituent to a phosphorus atom. This deactivates that

phosphorus atom to further reaction. The presence of the highly

electronegative fluorine atom at that site probably enhances

electron donation by the amino group compared with the situation

when a chlorine atom is present. (2) The low reactivity of P-F

bonds to substitution reactions may contribute to this effect.

(3) The weak nucleophilic character of amines toward phosphazene

phosphorus atoms reduces the overall reactivity. For these

reasons, units such as [P(F)(NHR)l are more deactivated than

(P(Cl)(NHR)] to further aminolysis, and very reactive nitrogen

nucleophiles (e.g. LiN(CH 3)2) must be employed before all the

P-F bonds can be replaced by amino pendent groups.

Investigations of the reactions of the fluorocyclophos-

phazenes (NPF2)3 or (NPF2)4 with organometallic reagents such as

methyllithium, n-butyllithium, phenyllithium or methylmagnesium

chloride have been carried out in several laboratories [11, 12,

13, 141. It has been found that the fluorocyclophosphazenes

are significantly more resistant to chain degradation reactions

I"



than are chlorocyclophosphazenes.

2. The reactions of (NPF2)n with sodium alkoxides, aryloxides,

or amines. The reactions of high polymeric (NPF2)n with sodium

trifluoroethoxide or sodium phenoxide are considerably slower

than those of (NPC12)n with the same reagents, but complete

fluorine replacement can be effected to yield [NP(OCH2 CF )] or
23 n

[NP(OC6H5)2 n. The interactions of (NPF2)n with amines such as

NH2CH3, NH2C4H9 , NH2C6H5 or NH(CH3)2 resulted exclusively in the

formation of products in which each phosphorus atom possessed one

fluorine and one amino substituent [8]. The similarity to the

cyclic model systems is striking. These results are illustrated

in Scheme 4 for the interactions of (NPF2)n with n-butylamine.

With (NPCl2)n, a non-geminal amination pattern has been detected

in only one case, and this involved the interactions of (NPC1 2)n

with the bulky diethylamine. The substitution pattern for the

reaction of (NPF 2)n with amines is probably not entirely a

consequence of steric inhibition because amines with small steric

dimensions (e.g. methylamine) also yield fluoro-amino phosphazenes.

In a practical sense, the partial amination of (NPF ) is a
2 n

complicating factor because the residual P-F bonds impart hydro-

lytic instability to the products. However, it also provides a

synthetic advantage for the preparation of new polyphosphazene

structures. For example, the reactions of polymers such as

[NP(NHC4H9)(F)]n with sodium trifluoroethoxide opens up new

synthetic pathways to the formation of polymeric species of the

type, [NP(NHC4H9)(OCH 2CF3)Jn (Scheme 4). Mixed substituent

phosphazenes with the substituent groups arrayed in a regular

fashion along the backbone should possess properties that are

different from those with the substituents oriented randomly.
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3. Reactions of (NPF2)n with Phenyllithium. Although

poly(difluorophosphazene) is a useful intermediate for the

synthesis of alkoxy, aryloxy, or aminophosphazene high polymers,

its principle utility is as a substrate for reactions with

organometallic reagents to yield species with side groups linked

to the skeleton through carbon-phosphorus bonds. Chain cleavage

reactions are far less facile when poly(difluorophosphazene) is

used as a substrate than when poly(dichlorophosphazene) is

employed. This conclusion is based on the studies described in

the following sections.

The interactions of (NPF2 )n with phenyllithium were carried

out as illustrated in Scheme 5. (Sodium trifluoroethoxide was

used in most cases as a second nucleophile to ensure complete

fluorine replacement). These reactions yielded the first

examples of phosphazene high polymers that possess significant

percentages of side groups attached to the skeleton through

direct P-C bonds [15]. The polymers isolated, their

molecular weights and their glass transition temperatures (Tg)
g

are listed in Table 1.
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TABLE 1. Properties of Poly(alkyl- or arylphosphazenes)

Polymer GPC M.W. a Tg (0C)b

C
[NP(C 6 H5 )0 .38 (OCH2CF3 )1.6 2 ]n  > I x 106  +7

[NP(C 6Hs) 0 64 (OCH2CF 3). 36 ]c > 1 x 106 +25
6c 0.6 +45

[NP(C6H5) 0.96 (OCH2CF3 )1 .04 i > x 10 +45

[P(C6H5) 1.24 (OCH2CF3 )0.76 ]nc > 1 x 106 +60

[NP(C 6H5)2 ]n
c  5.0 x 104+70

[NP(CH 3 ) 1.8(OCH2CF3 )0 .2]n
d  crosslinked -

[NP(CH3 ) 1.0 (OCH2CF3 ) 1.0 1nd crosslinked -

[NP(C 4 H9)0.98 (OCH2CF3 )1 .0 2 ]n
e  crosslinked -

e[NP(C4H) (OCH2CF3) I crosslinked -
4 91.5 2 30.5 n

[NP(C 4H9 )2]n
f  5.0 X 104 -45

9 5[NP(C2H5)1.8 (OCH2 CF3)0.2n 6.0 x 10 -60

a GPC Molecular Weights are relative to polystyrene standards.

b Tg values were obtained by the torsional pendulum method.

C Obtained from the interactions of (NPF2 )n and phenyllithium

(at 25C) followed by treatment with sodium trifluoroethoxide.
d Obtained from the interactions of (NPF2)n and methyllithium

(THF; -60°C) followed by treatment with sodium trifluoroethoxide.
Obtained from the interactions of (NPF2 )n and n-butyllithium

(THF; -60C) followed by treatment with sodium trifluoroethoxide.

Obtained from the interactions of (NPF2)n and an excess of
n-butyllithium (benzene; +2*C).

g Obtained from the interactions of (NPF2 )n and diethylmagnesium
(THF; 25*C) and then sodium trifluoroethoxide treatment.

[I



The fully phenylated derivatives had lower molecular weights

than the mixed-substituent phenyl-trifluoroethoxy polymers. In

fact, it was found that approximately 70% of the fluorine atoms

could be replaced by phenyl groups before a molecular weight

decline was detected. These results are in marked contrast to

the rapid molecular weight loss that accompanies substitution

during the interactions of phenyllithium with (NPC12)n 14)

(Figure 2).

1051
1210

MW

I00O0 ...............

100

0 2i 50 7o 100

% Aryl Greups

FIG. 2. Comparisons of the variation in GPC average

molecular weight for [NP(C 6H5)x (OCH2CF3)yIn versus the

percentage of phenyl groups attached to the backbone. The

broken curve represents the behavior of the system when

(NPCl 2)n is used as a reaction substrate. The solid line

illustrates the behavior with (NPF 2 ) n .



An interesting feature of the reaction of (NPF,)1 with

phenyllithium is the dramatic decrease in reaction rate that

occurs after approximately 70% of the fluorine atoms of (NPF2 )n

have been replaced by phenyl groups. Chain cleavage is

encountered during this period of slow substitution. A study

of the mechanism of chain cleavage is currently under

investigation in our laboratory.

Another interesting feature of the phenylation process is

the tendency for phenyl substitution to proceed predominantly,

although not exclusively, by a geminal mechanism. This implies

that phosphorus atoms that possess one fluorine atom and one

phenyl group are more reactive to arylation than are phosphorus

atoms that possess two fluorine atoms. This substitution

pattern is in contrast to the amination reactions of (NPF2 )n

described in the previous section. These differences could

reflect the higher reactivity of the organolithium reagent than

the amines, and possibly the existence of different mechanisms

for the two substitution processes.

A preliminary study of the thermal behavior of the

derivative [NP(C 6 H 5) 1.3 2 (OCH2 CF3 )0 .6 8]n was carried out. It

showed that the presence of the phenyl groups on a polyphos-

phazene chain increases the stability at 3000C compared with the

homopolymer, [NP(OCH2CF3 )2 ]n .  Phenyl pendent groups could

increase the thermal stability of a polyphosphazene in two ways.

First, the low reactivity of a P-C bond as compared with P-0 or

P-N linkages could reduce the likelihood of side group reactions

at high temperatures. Second, the steric bulk of the phenyl

group might block the unzipping or backbiting processes that

lead to the formation of low molecular weight oligomers.

4. Reactions of (NPF2 ) with Alkyllithium Reagents. The

interactions of (NPF2 )n with methyllithium or n-butyllithium are

more complicated than those with phenyllithium. With the use of

these reagents, crosslinked products were obtained. The cross-



linking process was detected over a wide range of reaction

temperatures (for methyllithium from 25*C to -70*C, and for

n-butyllithium from OC to -700C). Furthermore, with butyl-

lithium, only low molecular weight products were isolated when

the reaction temperature exceeded OC. In fact, no reaction

conditions were found that did not involve either chain

cleavage or crosslinking.

However, it was found that the number of crosslinks per

chain decreased as the reaction temperature was lowered. When

very low reaction temperatures (-500C to -70*C) were

employed for n-butyllithium or methyllithium, lightly cross-

linked products were isolated that possessed high percentages

of alkyl pendent groups. These polymers were sufficiently

swelled by the reaction media to allow complete fluorine atom

replacement to take place with sodium trifluoroethoxide. Some

of the polymers prepared in this manner are listed in Table 1.

The crosslinking reaction observed with the use of alkyl-

lithium reagents and (NPF2)n probably involves two steps:

first, proton abstraction from pendent alkyl groups by the

alkyllithium compound; second, a coupling reaction between

the pendent alkyllithium substituent from one polymer chain and

a phosphorus-fluorine bond from a second polymer chain. This

reaction sequence is illustrated in Scheme 6 for the inter-

actions of (NPF 2)n with methyllithiwm.
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.. ReactionS of (NPF2)n with Organomagnesiun Compounds.

The interactions of (0PF2 )n with organomagnesiua reagents, such

as REgX or MgR2 yielded mainly crosslinked species. The

quantity of organic solvent-soluble products that were

isolated from these interactions never exceeded 10%. Even

phenylmagnesium bromide or diphenyluagnesium reacted with

(NPF 2 )n to yield crosslinked products. It seems unlikely that

proton abstractions from phenyl groups could occur at an

appreciable rate at 25*C. Thus, another mechanism for

crosslinking, not described by Scheme 6, must be operative with

these reagents. Additional research vith small molecule model

compounds is needed before the mechanistic basis for these

reactions can be understood.
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